If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8m^2+31m-4=0
a = 8; b = 31; c = -4;
Δ = b2-4ac
Δ = 312-4·8·(-4)
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-33}{2*8}=\frac{-64}{16} =-4 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+33}{2*8}=\frac{2}{16} =1/8 $
| 91/2r=133 | | 2m^2+4m+5=0 | | 90+3x+11+25=360 | | 9*1/2r=133 | | 5n+11=5 | | 30-x-10=3 | | 180-2x+x+24=180 | | 2y+6.5=1.5y+10 | | 5.3(-7y+8)-4y=43.5 | | 180-2x+x+34=180 | | 180-5x+2x+33=180 | | 1/2(4n-6)=35 | | 17+(3×n)/2=28 | | 4x+5-3x-7+4x-1=5(x-1)+2 | | 5h+8=4h+13 | | 4(x+)=-24 | | 3x+19=-43 | | F(t)=2.7183^1.4÷1097 | | -7x=-14/9 | | 2a^2-22a=-30.25 | | 1.2k+2.3=-0.54k+7.3 | | F(t)=2.7183^1.4 | | 97+x=3x+14 | | -10+2(x-6)=14 | | 7e(×+2)+3=444 | | 4x+10=2x+17 | | r^2+10=-12r | | -7+7(x+3)=7 | | 5m+2(m-5)=-66 | | 5xx11=120 | | 8(x+1)-4x-6=2(x+1) | | 30=-3(x-4) |